Enter a problem...
Linear Algebra Examples
x=2y-5x=2y−5 , 2x-4y=-102x−4y=−10
Step 1
Find the AX=BAX=B from the system of equations.
[1-22-4]⋅[xy]=[-5-10][1−22−4]⋅[xy]=[−5−10]
Step 2
The inverse of a 2×22×2 matrix can be found using the formula 1|A|[d-b-ca]1|A|[d−b−ca] where |A||A| is the determinant of AA.
If A=[abcd]A=[abcd] then A-1=1|A|[d-b-ca]A−1=1|A|[d−b−ca]
Find the determinant of [1-22-4][1−22−4].
These are both valid notations for the determinant of a matrix.
determinant[1-22-4]=|1-22-4|determinant[1−22−4]=∣∣∣1−22−4∣∣∣
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
(1)(-4)-2⋅-2(1)(−4)−2⋅−2
Simplify the determinant.
Simplify each term.
Multiply -4−4 by 11.
-4-2⋅-2−4−2⋅−2
Multiply -2−2 by -2−2.
-4+4−4+4
-4+4−4+4
Add -4−4 and 44.
00
00
00
Substitute the known values into the formula for the inverse of a matrix.
10[-4-(-2)-(2)1]10[−4−(−2)−(2)1]
Simplify each element in the matrix.
Rearrange -(-2)−(−2).
10[-42-(2)1]10[−42−(2)1]
Rearrange -(2)−(2).
10[-42-21]10[−42−21]
10[-42-21]10[−42−21]
Multiply 1010 by each element of the matrix.
[10⋅-410⋅210⋅-210⋅1][10⋅−410⋅210⋅−210⋅1]
Rearrange 10⋅-410⋅−4.
[Undefined10⋅210⋅-210⋅1][Undefined10⋅210⋅−210⋅1]
Since the matrix is undefined, it cannot be solved.
UndefinedUndefined
Undefined