Linear Algebra Examples

Solve Using an Inverse Matrix x=2y-5 , 2x-4y=-10
x=2y-5x=2y5 , 2x-4y=-102x4y=10
Step 1
Find the AX=BAX=B from the system of equations.
[1-22-4][xy]=[-5-10][1224][xy]=[510]
Step 2
Find the inverse of the coefficient matrix.
Tap for more steps...
The inverse of a 2×22×2 matrix can be found using the formula 1|A|[d-b-ca]1|A|[dbca] where |A||A| is the determinant of AA.
If A=[abcd]A=[abcd] then A-1=1|A|[d-b-ca]A1=1|A|[dbca]
Find the determinant of [1-22-4][1224].
Tap for more steps...
These are both valid notations for the determinant of a matrix.
determinant[1-22-4]=|1-22-4|determinant[1224]=1224
The determinant of a 2×22×2 matrix can be found using the formula |abcd|=ad-cbabcd=adcb.
(1)(-4)-2-2(1)(4)22
Simplify the determinant.
Tap for more steps...
Simplify each term.
Tap for more steps...
Multiply -44 by 11.
-4-2-2422
Multiply -22 by -22.
-4+44+4
-4+44+4
Add -44 and 44.
00
00
00
Substitute the known values into the formula for the inverse of a matrix.
10[-4-(-2)-(2)1]10[4(2)(2)1]
Simplify each element in the matrix.
Tap for more steps...
Rearrange -(-2)(2).
10[-42-(2)1]10[42(2)1]
Rearrange -(2)(2).
10[-42-21]10[4221]
10[-42-21]10[4221]
Multiply 1010 by each element of the matrix.
[10-410210-2101][104102102101]
Rearrange 10-4104.
[Undefined10210-2101][Undefined102102101]
Since the matrix is undefined, it cannot be solved.
UndefinedUndefined
Undefined
 [x2  12  π  xdx ]  x2  12  π  xdx